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1. Introduction

The ability of a quantum field theory to describe a system with infinitely many degrees of

freedom is reflected by an infinite-dimensional operator space. In two dimensions, the de-

tailed structure of the operator space at a generic fixed point of the renormalization group

was revealed by the solution of conformal field theories [1]. It is divided into different oper-

ator families, each one consisting of a primary and infinitely many descendants. Within an

operator family, the scaling dimensions differ from that of the primary by integer numbers

that label different ‘levels’.

Perturbative arguments lead to the conclusion that this same structure is maintained

when conformal invariance is broken by a perturbation producing a mass scale [2]. If the

massive theory is integrable, the operator space can be studied non-perturbatively within

the form factor bootstrap approach [3, 4]. It was shown for several models that the global

counting of solutions of the form factor equations matches that expected from conformal

field theory [5].

As for the correspondence between solutions of the form factor equations and operators,

asymptotic conditions at high energies play a crucial role. While primary operators are

naturally associated to the solutions with the mildest asymptotic behavior, we argued
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in [6] that specific asymptotic conditions selecting the solutions according to the level can

be identified. These were used in [7] to show the isomorphism between the critical and

off-critical operator spaces in the Lee-Yang model, level by level up to level 7.

Asymptotic conditions, however, cannot determine completely a descendant operator

in a massive theory. Indeed, they leave unconstrained terms which are subleading at

high energies and depend on the way the operator is defined away from criticality. The

operator T T̄ , obtained from the components of the energy-momentum tensor, appears

as the natural starting point in relation to the problem of the off-critical continuation of

descendant operators. Indeed, being the lowest non-trivial scalar descendant of the identity,

this operator allows for a quite general characterization in two-dimensional quantum field

theory. A. Zamolodchikov showed how to define it away from criticality subtracting the

divergences which arise in the operator product expansion of T and T̄ [8]. We showed in [6]

for the massive Lee-Yang model that, with this information, the form factor programme

outlined above allows to uniquely determine T T̄ up to an additive derivative ambiguity

which is intrinsic to this operator. Our results have been successfully compared with

conformal perturbation theory in [9].

In this paper we address the problem of determining T T̄ in the sinh-Gordon model.

The essential difference with respect to the Lee-Yang case is that, while the latter is a

minimal model with the smallest operator content (two operator families), the sinh-Gordon

model possesses a continuous spectrum of primary operators, a circumstance that seriously

complicates the identification of specific solutions of the form factor equations. The massive

Lee-Yang model is the first in the infinite series of the φ1,3-perturbed minimal models

M2/(2N+3), each one containing N + 1 operator families. Due to a well known reduction

mechanism [10 – 13], these massive minimal models have to be recovered from sinh-Gordon

under analytic continuation to specific imaginary values of the coupling. The form factor

solution for the operator T T̄ of the sinh-Gordon model that we construct satisfies this

requirement.

The paper is organized as follows. In the next section 2 we recall a number of facts

about bosonic theories in two dimensions. The form factor solutions for the primary op-

erators in the sinh-Gordon model are reviewed in section 3, while the solution for T T̄ is

constructed in section 4. Few final remarks are contained in section 5. Six appendices

conclude the paper.

2. Bosonic field with a charge at infinity

If Bλµν is a tensor antisymmetric in the first two indices, the energy-momentum tensor Tµν

of a quantum field theory can be modified into

T̃µν = Tµν + ∂λBλµν (2.1)

preserving the conservation ∂µT̃µν = 0 and the total energy-momentum Pν =
∫

dσµTµν .

For a neutral two-dimensional boson with action

A =

∫

d2x

[

1

2
(∂µϕ)2 + V(ϕ)

]

(2.2)
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the choice1

Bλµν = − iQ√
2π

ελµενρ∂
ρϕ (2.3)

leads to

∂λBλµν = − iQ√
2π

(∂µ∂ν − ηµν¤)ϕ (2.4)

and to the variation

Θ̃ = Θ +
iQ

2

√

π

2
¤ϕ (2.5)

in the trace of the energy-momentum tensor

Θ =
π

2
T µ

µ . (2.6)

The canonical definition T µ
µ = −2V and the equation of motion ¤ϕ = ∂V/∂ϕ give the

classical result

Θ̃cl = π

(

−1 +
iQ√
8π

∂

∂ϕ

)

V(ϕ) . (2.7)

The parameter Q is dimensionless and goes under the name of “background charge” or

“charge at infinity”. It does not change the particle dynamics2 but, inducing a modification

of the energy-momentum tensor, essentially affects the scaling properties of the theory.

Free massless case. In the free massless case corresponding to the action

A0 =
1

2

∫

d2x (∂µϕ)2 (2.8)

a nonvanishing Q leaves the energy-momentum tensor traceless (Θ̃cl = Θ̃ = V = 0) and

the theory conformally invariant. The central charge is

C = 1 − 6Q2 (2.9)

and the scaling dimension of the primary operators

Vα(x) = ei
√

8π α ϕ(x) (2.10)

is

Xα = 2α(α − Q) . (2.11)

A derivation of these results within the formalism of this paper is given in appendix A.

Minimal models. For real values of the background charge the bosonic model can be

used to reproduce the minimal models of conformal field theory with central charge smaller

than 1 [14]. Indeed, the requirement that the 2k-point conformal correlator of an operator

Vα ∼ VQ−α is nonvanishing for any positive k selects the values

α = αm,n =
1

2
[(1 − m)α+ + (1 − n)α−] , m, n = 1, 2, . . . (2.12)

1We denote by ηµν the flat metric tensor and by ελµ the unit antisymmetric tensor in two dimensions.
2In particular, Q does not enter the perturbative calculations based on the Lagrangian.
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with

α± =
Q ±

√

Q2 + 4

2
. (2.13)

Equations (2.9) and (2.11) then reproduce the central charge

Cp/p′ = 1 − 6
(p − p′)2

pp′
(2.14)

and the scaling dimensions

Xm,n =
(p′m − pn)2 − (p − p′)2

2pp′
(2.15)

of the primary operators φm,n in the minimal models Mp/p′ [1] through the identification

α± = ±
(

p′

p

)± 1
2

. (2.16)

Since α+α− = −1, one obtains the correspondence

φm,n ∼ Vαm,n = exp

{

i

2

[

(m − 1)
1

α−
− (n − 1)α−

]

ϕ

}

. (2.17)

It is well known that, although genuine minimal models (i.e. those possessing a finite

number of conformal families which form an operator space closed under operator prod-

uct expansion) correspond to rational values of p/p′, the above formulæ in fact apply to

the degenerate operators of conformal field theory for continuous values of central charge

smaller than 1.

Liouville theory. A deformation of (2.8) which does not introduce any dimensional

parameter is obtained adding an operator which is marginal in the renormalization group

sense, namely has Xα = 2. This requirement selects Vα−
∼ VQ−α−

= Vα+ . To be definite

we take

AL =

∫

d2x

[

1

2
(∂νϕ)2 + µ e

√
8π b ϕ

]

, (2.18)

where we defined

b = iα− (2.19)

and µ is a coupling constant. For real values of b this is the action of Liouville field theory,

which is conformal and has been extensively studied in the literature (see e.g. [15] for a

list of references). Notice that the condition Θ̃cl = 0 gives the value Qcl = −i/b, which

coincides with the exact result

Q = α+ + α− = −i

(

b +
1

b

)

(2.20)

in the classical limit b → 0. The central charge and scaling dimensions of exponential

operators in Liouville field theory are given by (2.9) and (2.11) with Q given by (2.20).
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Sinh-Gordon model. The sinh-Gordon model is defined by the action

AshG =

∫

d2x

[

1

2
(∂νϕ)2 + µ e

√
8π b ϕ + µ′ e−

√
8π b ϕ

]

, (2.21)

which can be regarded as a perturbed conformal field theory in two different ways.

The first one consists in seeing it as a deformation of the Gaussian fixed point, i.e.

the conformal theory with C = 1. This amounts to setting Q = 0 keeping b as a free

parameter. In such a case, both the exponentials appearing in the action have scaling

dimension −2b2 and are never marginal for real values of b. They play a symmetric role

and the theory is invariant3 under the transformation ϕ → −ϕ. The trace of the energy-

momentum tensor, being proportional to the operator which breaks conformal invariance,

is Θ̃ = Θ ∼ µ cosh
√

8πbϕ.

The second point of view consists in looking at (2.21) as the perturbation of the

Liouville conformal theory (2.18) by the operator e−
√

8π b ϕ with scaling dimension Xib =

−2(2b2 + 1). Since this is now the operator which breaks conformal invariance, we have

Θ̃ ∼ µ′ e−
√

8π b ϕ, a result which agrees with the classical expectation (2.7) once one uses

Qcl for Q.

Sine-Gordon model and its reductions. The sine-Gordon action

AsG =

∫

d2x

[

1

2
(∂νϕ)2 − 2µ cos

√
8π β ϕ

]

(2.22)

can be obtained from (2.21) taking µ = µ′ and

β = −ib . (2.23)

For real values of β the only direct interpretation of this action as a perturbed conformal

field theory is as a deformation of the C = 1 conformal theory through the operators Vβ and

V−β with scaling dimension 2β2. The perturbation is relevant and the theory is massive for

β2 < 1. In this range the sine-Gordon model is known to be integrable and its factorized S-

matrix is known exactly [16]. The particle spectrum consists of the soliton A and antisoliton

Ā and, in the attractive range 0 < β2 < 1/2, of their neutral bound states, the breathers

Bn with

1 ≤ n < Int

(

π

ξ

)

(2.24)

and masses

mn = 2M sin
nξ

2
; (2.25)

here Int(x) denotes the integer part of x, M is the mass of the soliton and

ξ =
πβ2

1 − β2
. (2.26)

3In this case the couplings µ and µ′ have the same dimension and can be made equal shifting the field.
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Taking Q 6= 0 and looking at the sine-Gordon model as a perturbation of the conformal

theory (2.18) is problematic because the action (2.18) becomes complex when b is imaginary.

Formally, however, this point of view leads, through the identity

β = α− = −
√

p

p′
, (2.27)

to the conformal field theories with central charge (2.14) perturbed by the operator V−β ∼
φ1,3, namely to the action

AMp/p′
+ λ

∫

d2xφ1,3(x) . (2.28)

This φ1,3-perturbation of the C < 1 conformal field theories is known to be integrable for

any value of λ [2] and massive for a suitable choice of the sign of λ [17]. This choice is

implied in (2.28).

The relation between the sine-Gordon model and the action (2.28) suggested by these

formal reasonings can be confirmed and put on firmer grounds within a framework known

as quantum group reduction [10 – 13]. This relies on the fact that the sine-Gordon S-matrix

commutes with the generators of the affine quantum group SL(2)q with q = exp(iπ/β2),

and that for rational values of β2 = p/p′ a restriction can be operated in the space of particle

states and operators of the model which is consistent with this algebraic structure and

preserves locality. The quantum field theories obtained through this reduction mechanism

indeed coincide with the perturbed minimal models (2.28).

While soliton and antisoliton transform as a doublet under the action of the quantum

group, the breathers are scalars. This is why the reduction takes its simplest form when

the space of states can be restricted to the breather sector. Let us recall that the amplitude

for the scattering between the breathers Bm and Bn in the sine-Gordon model is4 [16]

Smn(θ) = t
(m+n) ξ

2π
(θ)t|m−n| ξ

2π
(θ)

min(m,n)−1
∏

j=1

t2
(|m−n|+2j) ξ

2π

(θ) , (2.29)

where

tα(θ) =
tanh 1

2(θ + iπα)

tanh 1
2(θ − iπα)

. (2.30)

While the double poles are associated to multiscattering processes [18, 19], the simple poles

located at θ = i(m+n)ξ/2 and θ = i(π−|m−n|ξ/2) correspond to the bound states Bn+m

and B|m−n|, respectively, propagating in the scattering channel BmBn. To be more precise,

the first class of simple poles can be associated to the bound states Bm+n only for values

of ξ such that m + n < Int(π/ξ). Indeed, (2.24) shows that outside this range the particle

Bm+n is not in the spectrum of the model in spite of the fact that the pole in the amplitude

(2.29) may still lie in the physical strip Im θ ∈ (0, π). In this case, however, this pole can

be explained in terms of a multiscattering process involving solitons as intermediate states.

This is why, for generic values of ξ, the breather sector of the sine-Gordon model is not a

self-contained bootstrap system.

4The rapidity variables θi parameterize energy and momentum of a particle as (p0
i , p

1
i ) = (m cosh θi,

m sinh θi), m being the mass. The scattering amplitudes depend on the rapidity difference between the

colliding particles.
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The situation becomes different when ξ takes the special values

ξN =
2π

2N + 1
, N = 1, 2, . . . , . (2.31)

In this case (2.24), (2.25) and (2.29) show that there are N breathers and that the formal

identities

mn = m2N+1−n (2.32)

Smn(θ) = Sm,2N+1−n(θ) (2.33)

hold, so that the pole discussed above can be associated to Bm+n for m + n ≤ N and to

B2N+1−m−n for m + n > N , without any need to resort to the solitons. Hence, for the

values (2.31) of the coupling, the breather sector of the sine-Gordon model provides alone

a self-consistent factorized scattering theory and, consequently, defines an infinite series of

massive integrable models labeled by the positive integer N . Equations (2.26) and (2.27)

then identify these massive models with the minimal models M2/(2N+3) with central charge

CN = 1 − 3
(2N + 1)2

2N + 3
, (2.34)

perturbed by the operator φ1,3 with scaling dimension

X
(N)
1,3 = −2

2N − 1

2N + 3
. (2.35)

This conclusion was first reached in [11]. The thermodynamic Bethe ansatz [20, 30] confirms

that the scattering theory (2.29) gives the central charges (2.34) for ξ = ξN , a result

that can be regarded as a non-perturbative confirmation of the fact that the charge at

infinity does not affect the dynamics of the particles. The minimal models M2/(2N+3)

possess the N non-trivial primary fields φ1,k, k = 2, . . . , N + 1, plus the identity φ1,1. The

negative values of the conformal data (2.34) and (2.35) show that these models do not

satisfy reflection positivity. The case N = 1 corresponds to the Lee-Yang model [22 – 24],

the simplest interacting quantum field theory. Its S-matrix S11(θ)|ξ=2π/3 = t2/3(θ) was

identified in [25].

3. Primary operators in the sinh-Gordon model

Most of the results discussed for the sine-Gordon model apply to the sinh-Gordon model

(2.21) through the correspondence (2.23). In particular also the latter model is a massive

integrable quantum field theory. The particle B interpolated by the scalar field corresponds

to the sine-Gordon lightest breather B1. The scattering amplitude

S(θ) ≡ S11(θ) = t ξ
π
(θ) (3.1)

does not possess poles in the physical strip when b is real and completely specifies the

S-matrix of the sinh-Gordon model. This amplitude was proposed and checked against

– 7 –
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perturbation theory in b in [26 – 28]. It should be clear from the discussion of the previous

section that the S-matrix is the same for the two ultraviolet limits (Gaussian fixed point

and Liouville theory) compatible with the action (2.21).

The S-matrix determines the basic equations satisfied by the matrix elements of a local

operator Φ(x) on the asymptotic multiparticle states [3, 4]. The form factors5

FΦ
n (θ1, . . . , θn) = 〈0|Φ(0)|B(θ1) . . . B(θn)〉 (3.2)

obey the equations

FΦ
n (θ1 + α, . . . , θn + α) = esΦαFΦ

n (θ1, . . . , θn) (3.3)

FΦ
n (θ1, . . . , θi, θi+1, . . . , θn) = S(θi − θi+1)FΦ

n (θ1, . . . , θi+1, θi, . . . , θn) (3.4)

FΦ
n (θ1 + 2iπ, θ2, . . . , θn) = FΦ

n (θ2, . . . , θn, θ1) (3.5)

Resθ′=θ+iπ FΦ
n+2(θ

′, θ, θ1, . . . , θn) = i



1 −
n

∏

j=1

S(θ − θj)



 FΦ
n (θ1, . . . , θn) (3.6)

where the euclidean spin sΦ is the only operator-dependent information.

The solutions of the equations (3.3)-(3.6) can be parameterized as [29, 21]

FΦ
n (θ1, . . . , θn) = UΦ

n (θ1, . . . , θn)
∏

i<j

F(θi − θj)

cosh
θi−θj

2

, (3.7)

Here the factors in the denominator introduce the annihilation poles prescribed by (3.6),

and

F(θ) = N (ξ) exp

[

2

∫ ∞

0

dt

t
qξ(t)

sinh t
2

sinh2 t
sin2 (iπ − θ)t

2π

]

(3.8)

with

qξ(t) = −4 sinh
ξt

2π
sinh

[(

1 +
ξ

π

)

t

2

]

(3.9)

N (ξ) = F(iπ) = exp

[

−
∫ ∞

0

dt

t
qξ(t)

sinh t
2

sinh2 t

]

. (3.10)

The function F(θ) is the solution of the equations

F(θ) = S(θ)F(−θ) (3.11)

F(θ + 2iπ) = F(−θ) (3.12)

with asymptotic behavior

lim
|θ|→∞

F(θ) = 1 ; (3.13)

it also satisfies the functional relation

F(θ + iπ)F(θ) =
sinh θ

sinh θ − sinh iξ
. (3.14)

The expression (3.8) is convergent in the range −π < ξ < 0 which is relevant for the

sinh-Gordon model.

5We denote by |0〉 the vacuum state.
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All the information about the operator is contained in the functions UΦ
n . They must

be entire functions of the rapidities, symmetric and (up to a factor (−1)n−1) 2πi-periodic

in all θj. We write them in the form

UΦ
n (θ1, .., θn) = Hn

(

1

σ
(n)
n

)(n−1)/2

QΦ
n (θ1, .., θn) (3.15)

using the symmetric polynomials generated by

n
∏

i=1

(x + xi) =
n

∑

k=0

xn−kσ
(n)
k (x1, . . . , xn) (3.16)

with xi ≡ eθi , and choosing the constants

Hn =

( −8 sin ξ

2nF(iπ)

)n/2

. (3.17)

The equations (3.3)–(3.6) imply

QΦ
n (θ1 + α, .., θn + α) = e

“

sΦ+ n(n−1)
2

”

α
QΦ

n (θ1, .., θn) (3.18)

QΦ
n (θ1, .., θi, θi+1, .., θn) = QΦ

n (θ1, .., θi+1, θi, .., θn) (3.19)

QΦ
n (θ1 + 2πi, .., θn) = QΦ

n (θ1, .., θn) (3.20)

QΦ
n+2 (θ + iπ, θ, θ1, .., θn) = (−1)nxDn (x, x1, .., xn)QΦ

n (θ1, .., θn) , (3.21)

where x ≡ eθ and

Dn (x, x1, .., xn) =
n

∑

k=1

k
∑

m=1,odd

(−1)k+1[m]x2(n−k)+mσ
(n)
k σ

(n)
k−m , (3.22)

with

[m] ≡ sin(mξ)

sin ξ
. (3.23)

The equations (3.18)-(3.21) admit infinitely many solutions which account for the

infinitely many operators with spin sΦ. The scalar (sΦ = 0) solutions with the mildest

asymptotic behavior are expected to correspond to the primary operators of the theory,

namely the exponential operators (2.10). Introducing the notation

Φ̂ =
Φ

〈Φ〉 , (3.24)

the asymptotic factorization condition

lim
λ→+∞

F Φ̂0
n (θ1 + λ, . . . , θk + λ, θk+1, . . . , θn) = F Φ̂0

k (θ1, . . . , θk)F
Φ̂0
n−k (θk+1, . . . , θn) (3.25)

characterizes the scalar primary operators Φ0 with non-vanishing matrix elements on any

number of particles [31], and in this case selects the solutions [30]

Q(a)
n (θ1, . . . , θn) = [a] det M (n)(a), (3.26)

– 9 –
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where M (n)(a) is the (n − 1) × (n − 1) matrix with entries

M
(n)
i,j (a) = [a + i − j]σ

(n)
2i−j (3.27)

and a is a complex parameter. The trigonometric identity [a]2−[a−1][a+1] = 1 is useful to

check that the functions (3.26) solve the recursive equation (3.21). It was found in [30] (see

also [32]) that the solution (3.26) corresponds to the exponential operator6 V̂iab = V̂−aβ .

The solutions (3.26) satisfy the property

Q(a)
n = (−1)n Q(−a)

n , (3.28)

which is expected since a → −a amounts to ϕ → −ϕ, and the particle B is odd under this

transformation. In presence of the charge at infinity Q = ibπ/ξ we expect the identification

V̂α = V̂Q−α, namely

Q(a)
n = Q(−a−π/ξ)

n . (3.29)

The identity

[a] = −[a + π/ξ] , (3.30)

together with (3.28), ensures that (3.29) holds.

The solutions for the exponential operators allow to determine the form factors of the

components of the energy-momentum tensor. Let us start with the trace (2.6). As seen in

the previous section, when the ultraviolet limit is taken to be the Liouville theory (2.18)

we have7 Θ ∼ Vib, so that

QΘ
n = − π m2

8 sin ξ
Q(1)

n , (3.31)

where the normalization is fixed by the condition

FΘ
2 (θ + iπ, θ) =

π

2
m2 (3.32)

which corresponds to the normalization

〈B(θ)|B(θ′)〉 = 2π δ(θ − θ′) (3.33)

of the asymptotic states. If instead the sinh-Gordon model is seen as a perturbation of the

Gaussian fixed point, the symmetric combination Q
(1)
n + Q

(−1)
n must be considered. Then

(3.28) shows that the result (3.31) still holds for n even, while QΘ
n vanishes for n odd. This

analysis was first performed in [33], where the ultraviolet central charge was also evaluated

through the C-theorem sum rule [17, 34]

C =
12

π

∫

d2x |x|2 〈Θ(x)Θ(0)〉conn . (3.34)

It was checked that a truncated spectral expansion of the two-point trace correlator in

terms of the form factors (3.31) reproduces with good approximation the Liouville central

charge (2.9) if the sum is performed over all n, and the Gaussian value 1 if the sum is

restricted to the even contributions [33].

6Since the identity [a + 2π/ξ] = [a] implies the periodicity Q
(a+2π/ξ)
n = Q

(a)
n , we consider values of a in

the range (0, 2π/ξ).
7From now on we omit the tilde on the components of the energy-momentum tensor.
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When inserted in the asymptotic factorization equation (3.25) with Φ = Θ the solution

(3.31) prescribes the result

〈Θ〉 = FΘ
0 = − πm2

8 sin ξ
, (3.35)

which coincides with that known from the thermodynamic Bethe ansatz (see [35]).

The form factors of the other components of the energy-momentum tensor are easily

obtained exploiting the conservation equations8

∂̄T = ∂Θ

∂T̄ = ∂̄Θ (3.36)

which lead to

F T
n (θ1, . . . , θn) = −σ

(n)
1 σ

(n)
n

σ
(n)
n−1

FΘ
n (θ1, . . . , θn)

F T̄
n (θ1, . . . , θn) = − σ

(n)
n−1

σ
(n)
1 σ

(n)
n

FΘ
n (θ1, . . . , θn) (3.37)

for n > 0; 〈T 〉 = 〈T̄ 〉 = 0 as for any operator with nonzero spin.

It follows from the discussion of the previous section that, through the analytic con-

tinuation (2.23), the above results for the exponential operators in the sinh-Gordon model

also hold for the matrix elements of these operators on the breather B1 of the sine-Gordon

model. Moreover, when the coupling ξ takes the discrete values (2.31) corresponding to

the reduction to the φ1,3-perturbed minimal models M2/(2N+3), these results give, through

the correspondence (2.17), the form factors for the independent primary operators φ1,l,

l = 1, . . . , N + 1, of these massive minimal models. The reduction from the continuous

spectrum of exponential operators of the sinh-Gordon model to the finite discrete spectrum

of primary fields in the massive minimal models follows from the fact that in the latter

case the form factors have to satisfy constraints on the bound state poles in addition to

(3.3)-(3.6). For example, the fusion B1B1 → B2 requires

Resθ′=θ+iξF
Φ
n+2(θ

′, θ, θ1, . . . , θn) = iΓ2
11〈0|Φ(0)|B2(θ

′′)B1(θ1) . . . B1(θn)〉 , (3.38)

where θ′′ = θ + iξ/2 and the three-particle coupling Γ2
11 is obtained from

Resθ=iξS11(θ) = i
(

Γ2
11

)2
. (3.39)

It turns out [11, 36] that for ξ = ξN the complete set of bound state equations implied by

the breather sector seen as a self-contained bootstrap system selects among the solutions9

(3.26) only those with a = 1, . . . , N , besides the identity (see appendix E). These solutions

8We use the notation ∂ = ∂z and ∂̄ = ∂z̄ with reference to the complex coordinates z = x1 + ix2 and

z̄ = x1 − ix2.
9We stress that for ξ = ξN the knowledge of the Q

(a)
n for all n completely determines the operator since

all matrix elements involving particles Bj with j > 1 can be obtained through fusion equations like (3.38).
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correspond to the operators

V̂−kβN
= φ̂1,2k+1 , k = 1, . . . , N (3.40)

(βN = −
√

2/(2N + 3)), which, in view of the reflection relation

φ̂1,l = φ̂1,2N+3−l , l = 1, . . . , 2N + 2 (3.41)

are all the primaries of this series of minimal models. The results (3.31), (3.35) and (3.37)

for the matrix elements of the energy-momentum tensor apply to the minimal massive

models for ξ = ξN .

4. The operator T T̄

We have seen in the previous section how the primary operators correspond to the solu-

tions of the form factor equations (3.3)-(3.6) with the mildest asymptotic behavior at high

energies. The remaining solutions of these equations should span the space of descendant

operators.

At criticality descendant operators are obtained acting on a primary with products

of Virasoro generators L−i and L̄−j. The sum of the positive integers i (j) defines the

right (left) level l (l̄) of the descendant. We denote by Φl,l̄ a descendant of level (l, l̄) of

a primary Φ0,0 ≡ Φ0. Due to the isomorphism between critical and off-critical operator

spaces, the notion of level holds also in the massive theory. A relation between the level

and the asymptotic behavior of form factors has been introduced in [6, 7]. In particular,

for operators Φl,l with non-zero matrix elements on any number of particles this relation

reads

F
Φl,l
n (θ1 + λ, . . . , θk + λ, θk+1, . . . , θn) ∼ elλ , λ → +∞ (4.1)

for n > 1 and 1 ≤ k ≤ n − 1. It was also argued that the scaling operators of this kind

satisfy the asymptotic factorization property [6]

lim
λ→+∞

e−lλFLlL̄lΦ0
n (θ1 + λ, . . . , θk + λ, θk+1, . . . , θn) =

=
1

〈Φ0〉
FLlΦ0

k (θ1, . . . , θk)F L̄lΦ0

n−k (θk+1, . . . , θn) , (4.2)

where Ll and L̄l are operators that in the conformal limit converge to the product of right

and left Virasoro generators, respectively, acting on the primary. This equation reduces to

(3.25) in the case of primary operators.

This asymptotic information can be used to classify the form factor solutions according

to the level and to determine the leading part in the high-energy (conformal) limit. The

subleading contributions depend instead on the way the operators are defined off-criticality.

A complete analysis of the operator space in the massive Lee-Yang model up to level 7 is

given in [7].
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The composite operator T T̄ , obtained from the non-scalar components of the energy-

momentum tensor, is the simplest non-derivative scalar descendant of the identity. A. Za-

molodchikov showed that this operator can be defined away from criticality as [8]

T T̄ (x) = lim
ε→0

[T (x + ε)T̄ (x) − Θ(x + ε)Θ(x) + derivative terms] , (4.3)

where ’derivative terms’ means terms containing powers of ε times local operators which

are total derivatives. One consequence of this equation is that, if |n〉 and |m〉 denote n-

and m-particle states with the same energy (En = Em) and momentum (Pn = Pm), the

equation

〈m|T T̄ (0)|n〉 = 〈m|T (x)T̄ (0)|n〉 − 〈m|Θ(x)Θ(0)|n〉 (4.4)

holds, with the r.h.s. that does not depend on x. Since the generic matrix element can be

reduced to the form factors (3.2) iterating the crossing relation

〈B(θ′m). . .B(θ′1)|Φ(0)|B(θ1) . . . B(θn)〉=〈B(θ′m) . . . B(θ′2)|Φ(0)|B(θ′1 + iπ)B(θ1) . . . B(θn)〉+

2π

n
∑

i=1

δ(θ′1−θi)

i−1
∏

k=1

S(θk − θ′1) 〈B(θ′m) . . . B(θ′2)|Φ(0)|B(θ1) . . . B(θi−1)B(θi+1) . . . B(θn)〉,

(4.5)

the identities (4.4) contribute to the identification of the form factor solution for the opera-

tor T T̄ , in particular of the subleading parts which are left unconstrained by the asymptotic

factorization property (4.2). Since T T̄ is a level (2, 2) descendant of the identity, the fac-

torization takes in this case the form

lim
λ→+∞

e−2λF T T̄
n (θ1 + λ, . . . , θk + λ, θk+1, . . . , θn) = F T

k (θ1, . . . , θk) F T̄
n−k (θk+1, . . . , θn) .

(4.6)

We now argue that (4.4) implies the property

F T T̄
n = sum of terms containing (σ

(n)
1 )i(σ

(n)
n−1)

j , i + j ≥ 2 (4.7)

for n larger than 2 but other than 4. Observe first that the components of the energy-

momentum tensor, being local operators of the theory, must have form factors whose only

singularities in rapidity space are the annihilation poles prescribed by (3.6), and possible

bound state poles [37]. Then, it follows from (3.37) that

F T
n ∝ (σ

(n)
1 )2 , F T̄

n ∝ (σ
(n)
n−1)

2 , FΘ
n ∝ σ

(n)
1 σ

(n)
n−1 , (4.8)

for n > 2. Use now the resolution of the identity

I =

∞
∑

k=0

1

k!

∫

dθ1

2π
· · · dθk

2π
|k〉〈k| (4.9)

to expand the r.h.s. of (4.4) over matrix elements of T , T̄ and Θ. If the total energy-

momentum of the intermediate state |k〉 differs from that of |m〉 (which, we recall, equals

that of |n〉) the two sums in the r.h.s. separately depend on x, and must cancel each

– 13 –
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other in order to ensure the x-independence of the result. Then we are left with the

contributions of matrix elements over states with the same energy and momentum, which

all are x-independent. Consider the case m and n both larger than zero, m 6= n. It follows

from (4.8) that each of these matrix elements generically vanishes at least as η2, if η is

an infinitesimal splitting between the energies of the two states in the matrix element. A

milder behavior as η → 0 is obtained when |k〉 is identical to |m〉 or to |n〉. Indeed it can

be shown using (4.5) and (3.6) that the matrix elements of the energy-momentum tensor

over identical states are finite and non-zero. In the r.h.s. of (4.4) these non-zero matrix

elements multiply a matrix element vanishing at least as η2. We argue in a moment that

the form of the ‘derivative terms’ in (4.3) is such that they contribute terms vanishing at

least as η2 to the r.h.s. of (4.4). Putting all together, we conclude that the l.h.s. vanishes

at least as η2, and this implies the form (4.7). A more detailed derivation including the

explanation of the limitations on n can be found in appendix B together with the form

factor expansion of (4.4).

The property (4.7) can also be understood in the following way. Since mσ
(n)
1 and

mσ
(n)
n−1/σ

(n)
n are the eigenvalues of P = i∂ and P̄ = −i∂̄ on an n-particle asymptotic

state, (4.8) follows from the fact that in two dimensions the energy-momentum tensor can

formally be written as Tµν(x) = (2/π)(ηµν¤ − ∂µ∂ν)A(x), or

T = ∂2A , T̄ = ∂̄2A , Θ = ∂∂̄A , (4.10)

in terms of an operator A(x) which is not a local operator of the theory10. Using the

notation A · B ≡ A(x + ε)B(x) one has

T · T̄ − Θ · Θ =
1

2
∂2(A · T̄ ) +

1

2
∂̄2(A · T ) − ∂∂̄(A · Θ) . (4.11)

The property (4.7) then follows from the fact that also the ‘derivative terms’ in (4.3) must

be derivative operators of at least second order: those associated to negative powers of ε

because they must cancel the divergences arising in (4.11) when ε → 0; those associated to

ε0 because they must have l = l̄ ≤ 2 and we know that L−1 = ∂, L̄−1 = ∂̄.

Having collected this information, we can move forward in the determination of the

form factors of T T̄ . The first requirement to be satisfied is that they solve the form

factor equations (3.3)-(3.6) and have the asymptotic behavior (4.1) with l = 2. Since the

equations (3.3)-(3.6) are linear in the operator, the solution for T T̄ can be written as a

linear superposition of the scalar form factor solutions behaving as in (4.1) with l = 0, 1, 2.

We will refer to these solutions as level 0, level 1 and level 2 solutions, respectively. We

now argue that this linear combination can be restricted to

F T T̄
n = am−2 F ∂2∂̄2Θ

n + FK
n + cF ∂∂̄Θ

n + dm2 FΘ
n + em4 F I

n , (4.12)

with a, c, d, e dimensionless constants and FK
n to be defined below. Indeed, the level

0 solutions corresponding to scaling operators are spanned by the primaries and, among

10Indeed, F A
2 (θ1, θ2) contains a pole at θ1 − θ2 = iπ, in contrast with (3.6) which prescribes a vanishing

residue. Essentially, this is why (4.8) holds only for n > 2.
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these, only the form factors

F I
n = δn,0 (4.13)

of the identity and those of Θ satisfy the requirement (4.7). As for the level 1 scaling

operators, they are all of the form L−1L̄−1Φ0 = ∂∂̄Φ0. Equations (4.4), (4.6) and (4.7) put

no constraint on the contribution to (4.12) of such level 1 derivative operators. However,

we expect that the form factors of the operator T T̄ in the sinh-Gordon model enjoy the

following properties11:

i) to give the form factors of T T̄ on the lightest breather of the sine-Gordon model

under analytic continuation to positive values of ξ;

ii) to give the form factors of T T̄ on the lightest particle of the φ1,3-perturbed minimal

models M2/(2N+3) when we set ξ to the values ξN defined by (2.31);

iii) to be continuous functions of ξ.

We know that, while the sinh-Gordon and sine-Gordon models possess a continuous spec-

trum of primary operators, the φ1,3-perturbed minimal models M2/(2N+3) possess a discrete

spectrum of N + 1 primaries. The identity and the trace of the energy-momentum tensor

are the only primary operators which are present in all these models. Then the natural

way to comply with the requirements i)-iii) is that I and Θ are the only primaries that

contribute to (4.12). The extension of the argument to any of the models (2.28) with p/p′

rational implies that this is actually the only possibility. While we had reached this con-

clusion about the primaries by another path, the present reasoning also requires that ∂∂̄Θ

and ∂2∂̄2Θ are the only derivative operators which can appear in (4.12).

The superposition (4.12) without the term FK
n is sufficient to provide the most general

parameterization with the required asymptotic behavior up to n = 2. This is why FK
n is a

scalar three-particle kernel solution of the form factor equations, namely has the property

FK
n = 0 , n = 0, 1, 2 ; (4.14)

the first two non-vanishing elements of this solution are FK
3 and FK

4 , with UK
3 and UK

4

which factorize
∏

i<j cosh
θi−θj

2 in such a way to satisfy (3.6) with 0 on the r.h.s. The FK
n

are made of terms which under the limit (4.1) behave as elλ with l = 0, 1, 2. They define

the local operator K(x) which in (4.12) accounts for the linear independence of T T̄ within

the operator space of the theory.

Since our equations do not constrain the level 1 derivative contributions to (4.12), the

coefficient c will remain undetermined. This conclusion agrees with conformal pertubation

theory, which states that, due to the resonance phenomenon [2] (see also [38]), the operator

T T̄ can only be defined up to a term proportional to ∂∂̄Θ(x) [8]. Our remaining task is

that of showing that the r.h.s. of (4.12) can be uniquely determined up to this ambiguity.

For n = 2, the second derivative term is the only one contributing to the limit in (4.6),

and this fixes

a =
〈Θ〉
m2

. (4.15)

11Analogous properties do hold for the components T , T̄ and Θ of the energy-momentum tensor.
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The coefficients d and e can be determined by (4.4) with m = n = 1. Indeed, when we use

(4.9) to expand the operator product in the r.h.s., the x-independence of the result implies

that only the k = 1 intermediate state gives a non-vanishing contribution. Using (4.5) to

go to form factors we obtain the identities12

F T T̄
2 (iπ, 0) = −2〈Θ〉FΘ

2 (iπ, 0) = −πm2〈Θ〉 (4.16)

〈T T̄ 〉 = −〈Θ〉2 . (4.17)

On the other hand, we have from (4.12) that

〈T T̄ 〉 = dm2 〈Θ〉 + em4 (4.18)

F T T̄
2 (iπ, 0) = dm2 FΘ

2 (iπ, 0) , (4.19)

so that we obtain

d = − 2

m2
〈Θ〉 (4.20)

e =
〈Θ〉2
m4

. (4.21)

The search for the kernel contribution FK
n to (4.12) starts from the most general

solution of the form factor equations satisfying (4.14), (4.7) and (4.1) with l = 2. We

checked that equations (4.6) and (4.4) uniquely fix the level 2 and level 0 parts, respectively,

within such a solution. Concerning the level 1 part, it cannot be determined by these

conditions, because they do not exclude the contribution of those linear combinations

of ∂∂̄-derivatives of the primaries which vanish on one- and two-particle states. This

indetermination is eliminated if we impose the conditions i)-iii) above. To see this consider

the φ1,3-perturbed minimal models M2/(2N+3). The identification B2N+1−n ≡ Bn, n =

1, . . . , N , that follows from (2.33), implies the set of equations

〈0|Φ(0)|B2N+1−n〉 = 〈0|Φ(0)|Bn〉 (4.22)

for any local operator Φ of the massive minimal model. In the minimal models, and more

generally in the sine-Gordon model, the matrix elements involving particles Bn with n > 1

are related to the form factors (3.2) by residue equations on bound state poles of the type

(3.38). Due to (2.33), in the minimal models these bound state equations constrain the

form factors (3.2) themselves. For example, in the simplest case, N = 1, equation (3.38)

holds with B2 identified to B1 (see appendix E for the case of generic N). We find that

the only way of satisfying (4.22) for any N when Φ = T T̄ is to take13

〈0|K(0)|Bn〉 = 0 (4.23)

12The identity (4.17) was originally observed in [38] and follows also from (4.4) with m = n = 0 and

|x| → ∞. See also [39] for results on the vacuum expectation values of descendant operators in integrable

models.
13For n = 1, 2 (4.23) is implied by (4.14) for any value of ξ.
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for n = 1, . . . , 2N , or equivalently14

lim
η→0

ηn−1FK
n (θ1 + η, θ2 + 2η, . . . , θn + nη) = 0 (4.24)

with θk = θ1 + i(k − 1)ξ, k = 2, . . . , n and n ≥ 1.

The requirement of continuity in ξ then leads to extend (4.24) to generic values of ξ. We

checked explicitly up to n = 9 that the conditions (4.4), (4.6) and (4.24) uniquely determine

FK
n for generic ξ. The explicit derivation up to n = 4 is given in appendix C, while

appendix D contains the list of results up to n = 7. When inserted in (4.12) they provide

the form factors of T T̄ in the sinh-Gordon model seen as a perturbation of Liouville theory.

The results apply to the sine-Gordon and the φ1,3-perturbed minimal models M2/(2N+3)

as specified by i) and ii) above. Setting to zero the F T T̄
n with n odd one obtains the result

for the sinh-Gordon and sine-Gordon models seen as perturbations of the Gaussian fixed

point, for which the reflection symmetry ϕ → −ϕ holds. Few remarks about the free limit

ξ → 0 are contained in appendix F.

5. Conclusion

In this paper we identified the form factor solution corresponding to the operator T T̄

in the sinh-Gordon model and in the φ1,3-perturbed minimal models M2/(2N+3). The

identification is obtained up to the arbitrary additive contribution of the operator ∂∂̄Θ

which represents an intrinsic ambiguity in the definition of T T̄ .

We expect that the possibility of expressing the solution for T T̄ as the superposition

(4.12) of a three-particle kernel solution plus the contributions of the identity and the trace

of the energy-momentum tensor together with its first two scalar derivatives is not specific

to the class of models considered in this paper but is actually quite general. If so, the

expressions of the coefficients a, d and e given here should be universal.

The property, expressed by (4.11) and (4.7), that T T̄ behaves as a linear combination

of derivative operators on states with more than four particles should also be very general.

In particular, we remarked in [6] that it ensures that T T̄ does not contribute to integrability

breaking (at least to first order) when used to perturb a fixed point action. As a matter

of fact, many examples are known of integrable massless flows in which T T̄ is the leading

operator driving the flow into the infrared fixed point [40].
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A. Free boson

Consider the free massive boson described by the action (2.2) with

V = −1

2
m2ϕ2 . (A.1)

The local scalar operators of the theory satisfy (3.3)–(3.6) with sΦ = 0 and S(θ) = 1. The

primary operators

Vα = ei
√

8π α ϕ =

∞
∑

n=0

1

n!
(i
√

8π αϕ)n (A.2)

are subject also to the factorization property (3.25). One then obtains

F Vα
n =

(

i
√

8π αFϕ
1

)n
(A.3)

Fϕn

n = n! (Fϕ
1 )

n
. (A.4)

Equation (2.7) gives in this free case15

Θ = Θcl =
πm2

2

(

ϕ2 − iQ√
2π

ϕ

)

, (A.5)

and then

FΘ
1 = −m2

2

√

π

2
iQFϕ

1 (A.6)

FΘ
2 = πm2 (Fϕ

1 )
2

(A.7)

as the only non-zero form factors of this operator. Comparison with (3.32) fixes

Fϕ
1 =

1√
2

. (A.8)

The results (2.9) and (2.11) then easily follow using (4.9) to evaluate over form factors the

sum rules (3.34) and [31]

XΦ = − 2

π〈Φ〉

∫

d2x 〈Θ(x)Φ(0)〉conn . (A.9)

B. Constraints on the form factors of T T̄

Here we derive the constraints imposed on the form factors of T T̄ by the relations (4.4)

and show how they lead to the property (4.7).

The r.h.s. of (4.4) is expanded introducing in between the two pairs of operators the

resolution of the identity (4.9). Then the l.h.s and r.h.s. of (4.4) are rewritten in terms of

form factors by iterative use of the crossing relation (4.5). Let 〈m| = 〈B(θ′m) . . . B(θ′1)| and

|n〉 = |B(θ1) . . . B(θn)〉 be the two states with the same energy and momentum in (4.4).

15We write Θ for Θ̃.
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In order to avoid to sit directly on annihilation or bound state poles of the form

factors we introduce an infinitesimal splitting, parametrized by η, between the energies

and momenta of these two states. The identity (4.4) is recovered in the limit η → 0.

The l.h.s. has an expansion of the form:

〈B(θ′m + η′m) . . . B(θ′1 + η′1)|T T̄ (0)|B(θ1 + η1) . . . B(θn + ηn)〉 =

F T T̄
n+m(θ′m+η′m+iπ,..,θ′1+η′1+iπ,θ1+η1,..,θn+ηn) + 2π

m
∑

j=1

n
∑

i=1

δ(η′j − ηi + θ′j − θi)

j−1
∏

h=1

i−1
∏

k=1

S(η′j − η′h + θ′j − θ′h)S(ηk − η′j + θk − θ′j)F T T̄
n+m−2 (̂ı, ̂) + ... (B.1)

where η′a = (n+a)η, a = 1, . . . ,m, ηb = bη, b = 1, . . . , n, and F T T̄
n+m−2(̂ı, ̂) is the form factor

with n + m − 2 particles obtained omitting the particles B(θi + ηi) and B(θ′j + η′j). The

dots in (B.1) represent terms which factorize p delta functions, a product of two-particle

amplitudes, and form factors of T T̄ with n+m−2p particles with p = 2, ..., Int((n+m)/2).

Let us consider now the r.h.s. of (4.4). Among the infinitely many terms generated

by the insertion of (4.9) the only ones relevant for the identity (4.4) are those that do not

depend on x for η = 0. For each fixed k, 〈m|T (x)|k〉 〈k| T̄ (0)|n〉 − 〈m|Θ(x)|k〉 〈k|Θ(0)|n〉
can be expanded in terms of the form factors by using expansions like (B.1) for each

matrix element. Here the arguments of the delta functions are the differences between the

rapidities of the states |m〉 or |n〉 and those of |k〉. In these expansions the terms that do

not depend on x are only those factorizing a set of delta functions which saturate all the

integrations in (4.9) and fix the state |k〉 to one with the same energy and momentum of

|n〉 and |m〉. Such terms are in finite number and are generated only if k = n or k = m,

when the delta functions fix the state |k〉 to |n〉 or |m〉, respectively. We can now rearrange

such terms according to their content in delta functions: we have a number of terms which

do not factorize delta functions plus a number of terms which factorize one delta function,

and so on as in formula (B.1). The identity (4.4) is recovered imposing that in the l.h.s.

and in the r.h.s. the terms that factorize the same delta functions coincide in the limit

η → 0. An iterative structure appears for these identities (see (4.16) for the particular

case m = n = 1). In general, the terms factorizing delta functions give the results of the

identities (4.4) with m− 1 and n− 1, while the terms without delta functions give the new

condition

lim
η→0

F T T̄
n+m(θ′m+η′m+iπ,..,θ′1+η′1+iπ,θ1+η1,..,θn+ηn) =

= lim
η→0

{
min(n,m)

∑

a=0

1

2(n − a)!a!

∑

τ∈Pn

∑

µ∈Pm

a
∏

h=1

∆(θ′µm−a+h
− θτn−a+h

)

×{[F T
m+n−2a(θ

′
µm−a

+η′µm−a
+iπ,..,θ′µ1

+η′µ1
+iπ,θτ1+ητ1 ,..,θτn−a+ητn−a) ×

F T̄
2a(θ

′
µm

+η′µm
+iπ,..,θ′µm−a+1

+η′µm−a+1
+iπ,θτn−a+1+ητn−a+1 ,..,θτn+ητn) −

FΘ
m+n−2a(θ

′
µm−a

+η′µm−a
+iπ,..,θ′µ1

+η′µ1
+iπ,θτ1+ητ1 ,..,θτn−a+ητn−a) ×

FΘ
2a(θ

′
µm

+η′µm
+iπ,..,θ′µm−a+1

+η′µm−a+1
+iπ,θτn−a+1+ητn−a+1 ,..,θτn+ητn)]+[T ↔ T̄ ]} (B.2)
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where Pn is the group of permutations of n indices, τ is a permutation and

∆(x) =

{

1 for x = 0 ,

0 for x 6= 0 .

Let us observe now that the r.h.s. of (B.2) goes always to zero at least as η2, because the

p-particle form factors of T, T̄ and Θ respectively factorize (σ
(p)
1 )2, (σ

(p)
p−1)

2 and σ
(p)
1 σ

(p)
p−1.

The only exceptions to this situation arise if some rapidities are grouped in pairs that lie

on annihilation poles or for rapidity configurations which intercept bound state poles. In

every case, in terms of the parametrization (3.7), the only way in which the form factors

of T T̄ can satisfy (B.2) is that for any p > 2 the function UT T̄
p is the sum of terms each

one factorizing
(

σ
(p)
1

)i (

σ
(p)
p−1

)j
with some i and j such that i + j ≥ 2.

This property amounts to (4.7) provided that there are no cancellations with the

denominator of (3.7). This denominator can be written as

∏

1≤i<j≤p

cosh(θi − θj) =

(

1

2pσ
(p)
p

)(p−1)/2
∏

1≤i<j≤p

(xi + xj)

=

(

1

2pσ
(p)
p

)(p−1)/2

detD(p) , (B.3)

where D(p) is the (p − 1) × (p − 1) matrix with entries

D
(p)
ij = σ

(p)
2i−j . (B.4)

For p > 2, it is only for p = 4 that (B.3) is a sum of terms all containing non-vanishing

powers of σ
(p)
1 or σ

(p)
p−1 and cancellations may occur.

C. Explicit construction

In this appendix we determine the form factors of the kernel K up to four particles. At

three particles the most general solution of the form factor equations satisfying (4.7), (4.1)

with l = 2 and the initial condition

FK
1 = 0 (C.1)

is16

b3σ
2
1σ

2
2 + D3σ

3
2 + C3σ

3
1σ3

σ2
3

FK3
3 + B3

σ1σ2

σ3
FK3

3 . (C.2)

Here, FK3
3 is defined by

QK3
3 = (σ1σ2 − σ3) (C.3)

in the parametrization (3.7) and generates the one dimensional space of the level 0 solutions

of the equations (3.3)-(3.6) which vanish at one particle. The first and second term in (C.2)

are pure level 2 and level 1 parts, respectively, and b3, B3, C3 and D3 are dimensionless

16We simplify the notation by dropping the superscript (n) on the symmetric polynomials.
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coefficients. The asymptotic factorization property fixes the level 2 solution, i.e. the

coefficients b3, C3 and D3 to

b3 = b = −〈Θ〉2 , (C.4)

C3 = −b , D3 = −b . (C.5)

For n = 3 the condition (4.24) fixes the level 1 part, i.e. the coefficient B3 to

B3 = −b(1 + 2 cos 2ξ). (C.6)

Now, let us consider the four-particle case. The most general level 2 solution to the form

factor equations satisfying (4.7) and the initial conditions

FK
2 = 0 (C.7)

is
b4σ

2
1σ

2
3 + E4σ

2
1σ2σ4 + D4σ2σ

2
3 + C4σ

2
2σ4

σ2
4

FK4
4 + B4

σ1σ3

σ4
FK4

4 + A4F
K4
4 . (C.8)

Here, FK4
4 is defined by

QK4
4 = (σ1σ3σ2 − σ2

3 − σ2
1σ4)

and generates the one dimensional space of the level 0 solutions of the equations (3.3)-(3.6)

which vanish at two particles. The asymptotic factorization property fixes the level 2 part

of (C.8), i.e. the coefficients b4 to the same value of b, and C4, D4 and E4 to

C4 = −b , D4 = 0 , E4 = 0 . (C.9)

The general result (B.2) for n = m = 2 is rewritten as

lim
η→0

F T T̄
4 (θ2 + η + iπ, θ1 + η + iπ, θ1, θ2) = lim

η→0
{[F T

2 (θ1 + η + iπ, θ1)F
T̄
2 (θ2 + η + iπ, θ2)

−FΘ
2 (θ1 + η + iπ, θ1)F

Θ
2 (θ2 + η + iπ, θ2) − 〈Θ〉FΘ

4 (θ2 + η + iπ, θ1 + η + iπ, θ1, θ2)]

+[T ↔ T̄ ]} . (C.10)

This expression implies for the four-particle kernel

lim
η→0

FK
4 (θ2 + η + iπ, θ1 + η + iπ, θ1, θ2) = 2[FΘ

2 (iπ, 0)]2 (cosh 2(θ1 − θ2) − 1) , (C.11)

where the r.h.s. comes from the identity

F T
2 (θ1 + iπ, θ1)F

T̄
2 (θ2 + iπ, θ2)−FΘ

2 (θ1 + iπ, θ1)F
Θ
2 (θ2 + iπ, θ2) = [e2(θ1−θ2)−1] [FΘ

2 (iπ, 0)]2.

(C.12)

The above condition fixes the level 0 part of (C.8), i.e. the coefficient A4 to

A4 = 4b cos2 ξ . (C.13)

Finally, for n = 4 the condition (4.24) fixes the level 1 part, i.e. the coefficient B4 to

B4 = −2b cos ξ(1 + 4 cos ξ + 2cos 2ξ). (C.14)

This procedure has been implemented up to nine particles and the result is given in

the next appendix.
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D. Kernel solution

We list in this appendix the functions Q̃K
n which through (3.7), (3.15) and

QK
n = −〈Θ〉2 Q̃K

n (D.1)

determine FK
n in (4.12). The Q̃K

n have been determined explicitly up to n = 9. The
functions Q̃K

8 and Q̃K
9 , however, are too cumbersome and we do not reproduce them here.

We simplify the notation by dropping the superscript (n) on the symmetric polynomials.

Q̃K

3
=

1

σ2

3

(σ2

1
σ2

2
− σ3

2
− σ3

1
σ3 − (1 + 2 cos[2ξ])σ1σ2σ3)(σ1σ2 − σ3) (D.2)

Q̃K

4 =
1

σ2

4

(σ2

1σ2

3 − σ2

2σ4 − 2 cos[ξ](1 + 4 cos[ξ] + 2 cos[2ξ])σ1σ3σ4 + 4 cos[ξ]2σ2

4)

(σ1σ3σ2 − σ2

3
− σ2

1
σ4) (D.3)

Q̃K

5 =
1

σ2

5

(−σ4

1σ3σ
2

4σ5 + σ2

4σ5(σ
2

2σ3−4cos[ξ]
2
σ3σ4−σ2σ5) + σ1σ4σ5(−σ3

2σ4 + σ2(2(2 + cos[2ξ])σ2

4

−(7 + 8 cos[ξ] + 8 cos[2ξ] + 4 cos[3ξ] + 2 cos[4ξ])σ3σ5) + 4 cos[ξ]((1 + 4 cos[ξ] + 2 cos[2ξ]

+ cos[3ξ])σ2

3
σ4 + (1 + 2 cos[ξ] + 2 cos[2ξ])σ2

5
)) + σ2

1
(2(4 + 4 cos[ξ] + 5 cos[2ξ] + 2 cos[3ξ]

+ cos[4ξ])σ2

2
σ4σ

2

5
−σ5(σ

3

3
σ4 + 8cos[

ξ

2
]
2

(2 + cos[ξ] + 2 cos[2ξ] + cos[3ξ])σ2

4
σ5 + σ3σ

2

5
)

−σ2(σ
4

4 + 2(5 + 4 cos[ξ] + 6 cos[2ξ] + 2 cos[3ξ] + cos[4ξ])σ3σ
2

4σ5−σ2

3σ
2

5))

+σ3

1
(2σ4σ5((3 + 4 cos[ξ] + 4 cos[2ξ] + 2 cos[3ξ] + cos[4ξ])σ2

4
+ (2 + cos[2ξ])σ3σ5)

+σ2(σ3σ
3

4
−4cos[ξ]

2
σ3

5
))) (D.4)

Q̃K

6 =
1

σ2

6

(σ3

1σ2σ3σ4σ
3

5 − σ2

1σ2σ3σ
4

5 − 4cos[ξ]
2
σ3

1σ4σ
4

5 + 4cos[ξ]
2
σ2

1σ5

5 − σ2

1σ2σ
3

4σ5σ6 − σ2

1σ
3

3σ2

5σ6

−σ1σ
3

2
σ4σ

2

5
σ6 − σ4

1
σ3σ4σ

2

5
σ6 − 2 cos[ξ](7 + 16 cos[ξ] + 12 cos[2ξ] + 4 cos[3ξ]

+2 cos[4ξ])σ2

1σ2σ3σ4σ
2

5σ6 + σ2

2σ3σ4σ
2

5σ6 + 2(6 + 11 cos[ξ] + 8 cos[2ξ] + 6 cos[3ξ] + 2 cos[4ξ]

+ cos[5ξ])σ1σ
2

3σ4σ
2

5σ6 + 2(6 + 11 cos[ξ] + 8 cos[2ξ] + 6 cos[3ξ] + 2 cos[4ξ] + cos[5ξ])σ3

1σ2

4σ
2

5σ6

+2(2 + cos[2ξ])σ1σ2σ
2

4
σ2

5
σ6 − 4cos[ξ]2σ3σ

2

4
σ2

5
σ6 − 4cos[ξ]2σ4

1
σ2σ

3

5
σ6 + 2(6 + 11 cos[ξ] + 8 cos[2ξ]

+6 cos[3ξ] + 2 cos[4ξ] + cos[5ξ])σ2

1
σ2

2
σ3

5
σ6 + (5 + 4 cos[2ξ])σ3

1
σ3σ

3

5
σ6 − 2(1 + 2 cos[ξ])

3
(1 − cos[ξ]

+ cos[2ξ])σ1σ2σ3σ
3

5
σ6 − 2(6 + 15 cos[ξ] + 8 cos[2ξ] + 8 cos[3ξ] + 2 cos[4ξ] + cos[5ξ])σ2

1
σ4σ

3

5
σ6

−σ2σ4σ
3

5σ6 + 4(2 cos[ξ] + cos[3ξ])σ1σ
4

5σ6 + σ2

1σ2σ3σ
2

4σ2

6 + 2(6 + 11 cos[ξ] + 8 cos[2ξ] + 6 cos[3ξ]

+2 cos[4ξ] + cos[5ξ])σ2

1σ2σ
2

3σ5σ
2

6 − 2(1 + 2 cos[ξ])
3
(1 − cos[ξ] + cos[2ξ])σ1σ

3

3σ5σ
2

6 + 2(2

+ cos[2ξ])σ2

1
σ2

2
σ4σ5σ

2

6
− 2(1 + 2 cos[ξ])3(1 − cos[ξ] + cos[2ξ])σ3

1
σ3σ4σ5σ

2

6
− 2σ1σ2σ3σ4σ5σ

2

6

−(3 + 4 cos[2ξ])σ2

1
σ2

4
σ5σ

2

6
+ 4cos[ξ]

2
σ5

1
σ2

5
σ2

6
− 2(6 + 15 cos[ξ] + 8 cos[2ξ] + 8 cos[3ξ] + 2 cos[4ξ]

+ cos[5ξ])σ3

1
σ2σ

2

5
σ2

6
− (3 + 4 cos[2ξ])σ1σ

2

2
σ2

5
σ2

6
+ 2(4 + 17 cos[ξ] + 6 cos[2ξ] + 9 cos[3ξ] + 2 cos[4ξ]

+ cos[5ξ])σ2

1σ3σ
2

5σ2

6 + (1 + 2 cos[2ξ])σ2σ3σ
2

5σ2

6 − 2(1 + cos[2ξ] + cos[4ξ])σ1σ4σ
2

5σ2

6 + (1

+2 cos[2ξ])
2
σ3

5σ2

6 − 4cos[ξ]
2
σ2

1σ2

2σ3σ
3

6 − σ3

1σ2σ4σ
3

6 + (1 + 2 cos[2ξ])σ2

1σ3σ4σ
3

6 + 4(2 cos[ξ]

+ cos[3ξ])σ4

1
σ5σ

3

6
− 2(1 + cos[2ξ] + cos[4ξ])σ2

1
σ2σ5σ

3

6
+ 2(1 + 2 cos[2ξ])2σ1σ3σ5σ

3

6

– 22 –



J
H
E
P
0
5
(
2
0
0
6
)
0
3
5

+(1 + 2 cos[2ξ])
2
σ3

1σ4

6) (D.5)

Q̃K

7
=

1

σ2
7

(σ5

1
σ2

6
σ7(4cos[ξ]2σ5σ6 − (1 + 2 cos[2ξ])σ4σ7) − σ4

1
σ6(−σ7(−σ3σ4σ5σ6 + (3 + 8 cos[ξ]

+4 cos[2ξ] + 4 cos[3ξ] + 2 cos[4ξ])σ3

6
− 2(6 + 7 cos[2ξ] + 2 cos[4ξ])σ5σ6σ7

+8cos[ξ]2(1 + 2 cos[2ξ])σ4σ
2

7
) + σ2σ6(4cos[ξ]2σ5σ

2

6
− σ7((1 + 2 cos[2ξ])σ4σ6 + 4cos[ξ]2σ3σ7)))

-σ2

6σ7(4cos[ξ]
2
σ3

2σ3σ7-σ
2

2σ5(σ3σ4 + 4cos[ξ]
2
σ7)-σ5((1 + 2 cos[2ξ])

2
σ5σ6-8cos[ξ]

2
cos[2ξ]σ4σ7)

+4cos[ξ]
2
σ3(σ

2

4σ5 + 4cos[ξ]
2
(1 + 2 cos[2ξ])σ6σ7) + σ2(−(1 + 2 cos[2ξ])σ3σ5σ6 + 4cos[ξ]

2
σ2

7

+σ4(σ
2

5 − 16cos[ξ]
4
σ3σ7))) + σ1σ6σ7(−σ3

2σ4σ5σ6 − 4cos[ξ]
2
(−1 + 2 cos[ξ])(1 + 2 cos[ξ])

3
σ3

3σ2

6

+4cos[ξ]
2
σ4

2
σ6σ7 − 4 cos[ξ]σ2

3
σ4(−(5 + 13 cos[ξ] + 8 cos[2ξ] + 6 cos[3ξ] + 2 cos[4ξ] + cos[5ξ])σ5σ6

+(1 + 2 cos[ξ])3(1 − cos[ξ] + cos[2ξ])σ4σ7) + (1 + 2 cos[2ξ])σ3(8cos[ξ]2σ3

6
+ (11 + 20 cos[2ξ]

+8 cos[3ξ] + 10 cos[4ξ] + 4 cos[5ξ] + 2 cos[6ξ])σ5σ6σ7 − 8cos[ξ]
2
(1 + 3 cos[2ξ] + 2 cos[3ξ]

+ cos[4ξ])σ4σ
2

7) − σ2

2((3 + 4 cos[2ξ])σ5σ
2

6 + σ7((9 + 10 cos[2ξ] + 2 cos[4ξ])σ4σ6 − 8cos[ξ]
2
σ3σ7))

+σ2(2(2 + cos[2ξ])σ2

4
σ5σ6 − 4cos[ξ]

2
(−1 + 2 cos[ξ])(1 + 2 cos[ξ])

3
σ3σ

2

5
σ6 + (11 + 20 cos[ξ]

+20 cos[2ξ] + 12 cos[3ξ] + 10 cos[4ξ] + 4 cos[5ξ] + 2 cos[6ξ])σ3σ4σ5σ7 + 8cos[ξ]
2
(1 + 4 cos[ξ]

+3 cos[2ξ] + 2 cos[3ξ] + cos[4ξ])σ2

3
σ6σ7 − σ7(−(19 + 26 cos[2ξ] + 10 cos[4ξ] + 2 cos[6ξ])σ2

6

+4(3 + 5 cos[ξ] + 4 cos[2ξ] + 3 cos[3ξ] + cos[4ξ] + cos[5ξ])σ5σ7)) + 2(2(2 cos[ξ] + cos[3ξ])σ3

5σ6

−(3 + 3 cos[2ξ] + cos[4ξ])σ4σ5σ
2

6 + 4cos[ξ]
2
σ4σ

2

5σ7 + 2cos[ξ]
2
(1 + 2 cos[2ξ])σ7(σ

2

4σ6 + 2(1

+2 cos[ξ] + 2 cos[2ξ] + 2 cos[3ξ])σ2

7
))) + σ3

1
(2(13 + 18 cos[ξ] + 19 cos[2ξ] + 10 cos[3ξ] + 7 cos[4ξ]

+2 cos[5ξ] + cos[6ξ])σ2

4
σ5σ

2

6
σ7 − 4cos[ξ]2(−1 + 2 cos[ξ])(1 + 2 cos[ξ])3σ3

4
σ6σ

2

7

+σ2

2(−4cos[ξ]
2
σ3σ

3

6σ7 + (1 + 2 cos[2ξ])
2
σ4

7) + σ6(−(1 + 2 cos[2ξ])σ2

3σ6σ
2

7 + σ3σ5σ6((1

+2 cos[2ξ])σ2

6 + 2(2 + cos[2ξ])σ5σ7) + σ2

7(2(13 + 14 cos[ξ] + 22 cos[2ξ] + 12 cos[3ξ]

+13 cos[4ξ] + 8 cos[5ξ] + 5 cos[6ξ] + 2 cos[7ξ] + cos[8ξ])σ2

6 + (19 + 26 cos[2ξ] + 10 cos[4ξ]

+2 cos[6ξ])σ5σ7)) − 4cos[ξ]
2
σ4(σ

2

5
σ3

6
+ (1 + 2 cos[2ξ])σ7((1 + 2 cos[ξ])

2
σ3σ

3

6
+ 4cos[ξ]

2
σ3

7
))

+σ2(4cos[ξ]2σ5

6
− 2(7 + 22 cos[ξ] + 11 cos[2ξ] + 12 cos[3ξ] + 5 cos[4ξ] + 2 cos[5ξ]

+ cos[6ξ])σ5σ
3

6σ7 − (3 + 4 cos[2ξ])σ2

5σ6σ
2

7 + 2(7 + 22 cos[ξ] + 11 cos[2ξ] + 12 cos[3ξ] + 5 cos[4ξ]

+2 cos[5ξ] + cos[6ξ])σ4σ
2

6σ2

7 + (1 + 2 cos[2ξ])σ4σ5σ
3

7 + σ3σ6(σ4σ5σ
2

6 − 2(3 + 3 cos[2ξ]

+ cos[4ξ])σ3

7
))) + σ2

1
(−σ3σ

5

6
− 2 cos[2ξ]σ3σ

5

6
+ 2σ4

5
σ6σ7 + 2 cos[2ξ]σ4

5
σ6σ7 − σ3

3
σ5σ

2

6
σ7

+14σ3σ5σ
3

6
σ7 + 44 cos[ξ]σ3σ5σ

3

6
σ7 + 22 cos[2ξ]σ3σ5σ

3

6
σ7 + 24 cos[3ξ]σ3σ5σ

3

6
σ7

+10 cos[4ξ]σ3σ5σ
3

6
σ7 + 4 cos[5ξ]σ3σ5σ

3

6
σ7 + 2 cos[6ξ]σ3σ5σ

3

6
σ7 − 9σ3σ

2

5
σ6σ

2

7

−10 cos[2ξ]σ3σ
2

5σ6σ
2

7 − 2 cos[4ξ]σ3σ
2

5σ6σ
2

7 + 4(2 cos[ξ] + cos[3ξ])σ3

2σ6σ
3

7 + 4σ2

3σ6σ
3

7

+6 cos[2ξ]σ2

3σ6σ
3

7 + 2 cos[4ξ]σ2

3σ6σ
3

7 − 49σ2

6σ
3

7 − 80 cos[ξ]σ2

6σ3

7 − 80 cos[2ξ]σ2

6σ3

7

−60 cos[3ξ]σ2

6
σ3

7
− 44 cos[4ξ]σ2

6
σ3

7
− 32 cos[5ξ]σ2

6
σ3

7
− 14 cos[6ξ]σ2

6
σ3

7
− 8 cos[7ξ]σ2

6
σ3

7

−2 cos[8ξ]σ2

6
σ3

7
− 2σ5σ

4

7
− 2 cos[2ξ]σ5σ

4

7
− σ2

4
σ6σ7((1 + 2 cos[2ξ])σ2

6
− 8cos[ξ]2(1 + 4 cos[ξ]

+3 cos[2ξ] + 2 cos[3ξ] + cos[4ξ])σ5σ7) + σ2

2
σ7(2(13 + 18 cos[ξ] + 19 cos[2ξ] + 10 cos[3ξ] + 7 cos[4ξ]

+2 cos[5ξ] + cos[6ξ])σ2

5
σ2

6
− σ5σ7(4cos[ξ]

2
(−1 + 2 cos[ξ])(1 + 2 cos[ξ])

3
σ4σ6 + σ3σ7) + 2σ2

6
((2

+ cos[2ξ])σ4σ6 − (10 + 22 cos[ξ] + 15 cos[2ξ] + 12 cos[3ξ] + 6 cos[4ξ] + 2 cos[5ξ] + cos[6ξ])σ3σ7))

−4 cos[ξ]σ4((6 + 10 cos[ξ] + 10 cos[2ξ] + 5 cos[3ξ] + 2 cos[4ξ] + cos[5ξ])σ2

5
σ2

6
σ7 + cos[ξ]σ3

5
σ2

7
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+(1 + 2 cos[2ξ])σ3σ
2

6σ2

7 − cos[ξ]σ5(σ
4

6 + 4cos[ξ]
2
σ3σ

3

7)) + σ2(2σ2

3σ7((13 + 18 cos[ξ] + 19 cos[2ξ]

+10 cos[3ξ] + 7 cos[4ξ] + 2 cos[5ξ] + cos[6ξ])σ3

6 + (2 + cos[2ξ])σ5σ6σ7 − 2cos[ξ]
2
σ4σ

2

7) + σ7(−σ3

4σ
2

6

+(31 + 8 cos[ξ] + 52 cos[2ξ] + 12 cos[3ξ] + 32 cos[4ξ] + 12 cos[5ξ] + 12 cos[6ξ] + 4 cos[7ξ]

+2 cos[8ξ])σ4σ6σ
2

7
− 2((6 + 7 cos[2ξ] + 2 cos[4ξ])σ4

6
+ 8cos[ξ]3(2 cos[ξ] − 2 cos[2ξ]

+3 cos[3ξ] + 2 cos[4ξ] + cos[5ξ])σ5σ
2

6
σ7 − 2cos[ξ]

2
σ2

5
σ2

7
)) + σ3(2(13 + 18 cos[ξ]

+19 cos[2ξ] + 10 cos[3ξ] + 7 cos[4ξ] + 2 cos[5ξ] + cos[6ξ])σ2

4σ6σ
2

7 − σ4(σ
4

6 + 2(18 + 22 cos[ξ]

+25 cos[2ξ] + 12 cos[3ξ] + 8 cos[4ξ] + 2 cos[5ξ] + cos[6ξ])σ5σ
2

6σ7 − σ2

5σ2

7) − σ7(σ
3

5σ6

+8cos[ξ]
2
cos[2ξ]σ3

7))))) (D.6)

E. Minimal models

In this appendix we explicitly derive the form factor equations which characterize the

operator content of the Φ1,3-perturbed minimal model M2,2N+3. The particles in such

models obey the following bootstrap fusion algebra

Ba × Bb → Bmin(a+b,2N+1−a−b) and Ba × Bb → B|a−b| , a, b = 1, . . . , N (E.1)

which correspond to the bound state poles located at

θ
min(a+b,2N+1−a−b)
ab = i(a + b)

ξN

2
(E.2)

θ
|a−b|
ab = i(π − |a − b|ξN

2
) , a 6= b . (E.3)

The pattern (E.1) makes clear the possibility to describe all the particles and their fusions

in terms of the fusion processes involving only the lightest particle B1. In this way all the

bound state constraints can be handled inside the parametrization (3.7).

In particular, we can describe the particle Bmin(n,2N+1−n) by the fusion of n B1 particles

set in pairs on the bound state pole of the B1B1 scattering channel. For the form factors

of the generic local operator Φ this implies

〈0|Φ(0)|Bmin(n,2N+1−n)(θ̃n)B1(θ
′
1) . . . B1(θ

′
m)〉 =

(−i)n−1

Υn
lim
ε1→0

... lim
εn−1→0

ε1 · ·εn−1F
Φ
m+n(θ1 + ε1, .., θn−1 + εn−1, θn, θ′1, .., θ

′
m) (E.4)

for 1 ≤ n ≤ 2N , θh = θ1 + i(h− 1)ξN , h = 2, . . . , n, and θ̃n = θ1 + i(n− 1)ξN/2. The result

does not depend on the way in which the limit is done and Υn can be written as

Υn =

{

∏n
k=1 Γk+1

1k for 1 ≤ n ≤ N ,
∏N

k=1 Γk+1
1k

∏N
h=2N+2−n Γh−1

1h for N < n ≤ 2N,
, (E.5)

where Γc
ab is the three-particle coupling defined by

Resθ=θc
ab

Sab(θ) = i (Γc
ab)

2 . (E.6)
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The use of formula (E.4) allows to express the conditions (4.22) as

lim
ε1→0

... lim
ε2N−n→0

ε1 · ·ε2N−nFΦ
2N+1−n(θ′1 + ε1, .., θ

′
2N−n + ε2N−n, θ′2N+1−n) =

(−1)N−n Υn

Υ2N+1−n
lim
ε1→0

... lim
εn−1→0

ε1 · ·εn−1F
Φ
n (θ1 + ε1, .., θn−1 + εn−1, θn) , (E.7)

with θh defined as above, 1 ≤ n ≤ N, θ′h = θ′1 + i(h − 1)ξN , h = 2, . . . , 2N + 1 − n, and

θ′1 = θ1 − i(2(N − n) + 1)ξN/2. Moreover, for each m + 2N B1 particles with m ≥ 0, we

can consider the case n = 2N in (E.4) which implies the equation [36]

lim
ε1→0,..,ε2N−1→0

ε1 · ·ε2N−1F
Φ
m+2N (θ +

2N − 1

2
ξN + ε1, .., θ − 2N − 1

2
ξN , θ1, .., θm) =

i(2N−1)Υ2NFΦ
m+1(θ, θ1, .., θm) .

(E.8)

In terms of the parametrization (3.7) the above equations become

QΦ
2N+1−n(θ′1, .., θ

′
2N+1−n) = W N

n (θ1)Q
Φ
n (θ1, .., θn) , (E.9)

W N
n (θ1) =

Q
(1)
2N+1−n(θ′1, .., θ

′
2N+1−n)

Q
(1)
n (θ1, . . . , θn)

(E.10)

and

QΦ
m+2N (θ +

2N − 1

2
ξN , . . . , θ +

1

2
ξN , θ − 1

2
ξN , . . . , θ − 2N − 1

2
ξN , θ1, . . . , θm) =

V N
m (x, x1, . . . , xm)QΦ

m+1(θ, θ1, . . . , θm) , (E.11)

with

V N
m (x, x1, . . . , xm)=(−1)

N(N+1)
2

+1
N−1
∏

k=2

[k]2xN(2N−1)
m
∏

i=1

(x+xi)
N
∏

k=2

m
∏

i=1

(x−xiω
k)(x−xiω

−k) ,

(E.12)

xi = eiθi and ω = eiξN .

These bound state equations complete the equations (3.18)-(3.21) and characterize

the operator content of this model. Let us describe the case of the primary fields. For

ξN = 2π/(2N + 1) a periodicity arises and the set of exponential operators eikβϕ of the

sine-Gordon model reduces to a finite set of 2N independent ones. Indeed, the form factors

of eikβϕ satisfy

F k+(2N+1)
n (θ1, .., θn) = F k

n (θ1, .., θn) , (E.13)

F (2N+1)−k
n (θ1, .., θn) = (−1)n+1 F k

n (θ1, .., θn) , (E.14)

implying that the independent among the operators eikβϕ can be chosen for k = 1, .., 2N .

Now, only those with k = 1, .., N have form factors satisfying the bound state equations

(E.9) and (E.11). Thus, the reduction of the operator content of the Φ1,3-perturbed minimal

model M2,2N+3 is implemented simply requiring the bound state equations.

The form factors of the operator T T̄ that we computed explicitly up to nine particles

satisfy the bound state equations (E.9) and (E.11) for any N when setting ξ = ξN , as

required by the property ii) in section 4.
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F. Free limit

The expressions given in this paper for the form factors of the components of the energy-

momentum tensor and for T T̄ apply to the sinh-Gordon model seen as a perturbation of

the Gaussian (C=1) fixed point when the form factors on states containing an odd number

of particles are set to zero. In this case the limit b = 0 corresponds to a free massive boson

with background charge Q = 0. The form factors of Θ and T T̄ behave as

FΘ
2m ∼ b2(m−1) , F T T̄

2m ∼ b2(m−2) (F.1)

as b → 0. As expected, the only finite non-vanishing form factors at b = 0 are obtained

for 2 and 4 particles, respectively; there are however infinities at 0 particles for Θ and at

0 and 2 particles for T T̄ that need to be subtracted.

The usual finite trace operator with zero expectation value at b = 0 is defined through

the subtraction17

ΘR = Θ − 〈Θ〉 I . (F.2)

The divergences of T T̄ are eliminated in the subtracted expression

T T̄R = T T̄ − am−2 ∂2∂̄2Θ − dm2 Θ − em4 I + F
= K + c ∂∂̄Θ + F , (F.3)

where a, d and e are the (infinite at b = 0) coefficients given in section 4, and F is a

finite part needed to ensure that the asymptotic factorization (4.6) continue to hold for

the regularized operators after the subtraction of the term proportional to ∂2∂̄2Θ. This

implies that FF
n vanishes for n 6= 4 and is determined by

QF
4 = 〈Θ〉2 σ2

1σ
2
3

σ2
4

(σ1σ3σ2 − σ2
3 − σ2

1σ4) , (F.4)

so that

F T T̄R
4 =

(

πm2

2

)2
1

σ4
(σ2

2 + 14σ1σ3 − 4σ4) . (F.5)

If F T T̄R
2 is set to zero choosing c = 0, this is the only non-vanishing form factor of T T̄R.

This result is easily compared with that for the matrix elements of T (x)T̄ (x)−Θ(x)Θ(x)

computed in free field theory with normal ordering regularization. The only difference arises

in the coefficient of the term proportional to σ1σ3 in (F.5), amounting to a contribution

of the operator ∂∂̄φ4. This is precisely one of the derivative terms in (4.3) left unfixed by

(4.6).

References

[1] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in

two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333.

17The limit b → 0 is understood in the equations below.

– 26 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB241%2C333


J
H
E
P
0
5
(
2
0
0
6
)
0
3
5

[2] A.B. Zamolodchikov, Advanced Studies in Pure Mathematics 19 (1989) 641; Integrals of

motion in scaling three state potts model field theory, Int. J. Mod. Phys. A 3 (1988) 743.

[3] M. Karowski and P. Weisz, Exact form-factors in (1+1)-dimensional field theoretic models

with soliton behavior, Nucl. Phys. B 139 (1978) 455.

[4] F.A. Smirnov, Form factors in completely integrable models of quantum field theory, World

Scientific, 1992.

[5] J.L. Cardy and G. Mussardo, Form-factors of descendent operators in perturbed conformal

field theories, Nucl. Phys. B 340 (1990) 387;

A. Koubek, The space of local operators in perturbed conformal field theories, Nucl. Phys. B

435 (1995) 703 [hep-th/9501029];

F.A. Smirnov, Counting the local fields in SG theory, Nucl. Phys. B 453 (1995) 807

[hep-th/9501059];

M. Jimbo, T. Miwa and Y. Takeyama, Counting minimal form factors of the restricted

sine-Gordon model, math-ph/0303059.

[6] G. Delfino and G. Niccoli, Matrix elements of the operator tt̄ in integrable quantum field

theory, Nucl. Phys. B 707 (2005) 381 [hep-th/0407142].

[7] G. Delfino and G. Niccoli, J. Stat. Mech. (2005) P04004.

[8] A.B. Zamolodchikov, Expectation value of composite field T T̄ in two- dimensional quantum

field theory, hep-th/0401146.

[9] V.A. Belavin and O.V. Miroshnichenko, JETP Letters 82 (2005) 775.

[10] A. LeClair, Restricted sine-Gordon theory and the minimal conformal series, Phys. Lett. B

230 (1989) 103.

[11] F.A. Smirnov, Reductions of the sine-Gordon model as a perturbation of minimal models of

conformal field theory, Nucl. Phys. B 337 (1990) 156.

[12] N. Reshetikhin and F. Smirnov, Hidden quantum group symmetry and integrable

perturbations of conformal field theories, Commun. Math. Phys. 131 (1990) 157.

[13] D. Bernard and A. Leclair, Residual quantum symmetries of the restricted sine-Gordon

theories, Nucl. Phys. B 340 (1990) 721.

[14] V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in

2D statistical models, Nucl. Phys. B 240 (1984) 312.

[15] A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap

in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136].

[16] A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized S-matrices in two dimensions as

the exact solutions of certain relativistic quantum field models, Ann. Phys. (NY) 120 (1979)

253.

[17] A.B. Zamolodchikov, Renormalization group and perturbation theory near fixed points in

two-dimensional field theory, Sov. J. Nucl. Phys. 46 (1987) 1090.

[18] S.R. Coleman and H.J. Thun, On the prosaic origin of the double poles in the sine-Gordon s

matrix, Commun. Math. Phys. 61 (1978) 31.

[19] C.J. Goebel, Prog. Theor. Phys. Suppl. 86 (1986) 261.

– 27 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA3%2C743
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB139%2C455
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB340%2C387
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB435%2C703
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB435%2C703
http://xxx.lanl.gov/abs/hep-th/9501029
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB453%2C807
http://xxx.lanl.gov/abs/hep-th/9501059
http://xxx.lanl.gov/abs/math-ph/0303059
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB707%2C381
http://xxx.lanl.gov/abs/hep-th/0407142
http://xxx.lanl.gov/abs/hep-th/0401146
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB230%2C103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB230%2C103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB337%2C156
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C131%2C157
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB340%2C721
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB240%2C312
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB477%2C577
http://xxx.lanl.gov/abs/hep-th/9506136
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C120%2C253
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C120%2C253
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2C46%2C1090
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C61%2C31
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPSA%2C86%2C261


J
H
E
P
0
5
(
2
0
0
6
)
0
3
5

[20] A.B. Zamolodchikov, Thermodynamic bethe ansatz in relativistic models. scaling three state

potts and Lee-Yang models, Nucl. Phys. B 342 (1990) 695.

[21] T.R. Klassen and E. Melzer, Purely elastic scattering theories and their ultraviolet limits,

Nucl. Phys. B 338 (1990) 485.

[22] C.N. Yang and T.D. Lee, Phys. Rev. 87 (1952) 404;

T.D. Lee and C.N. Yang, Phys. Rev. 87 (1952) 410.

[23] M.E. Fisher, Yang-lee edge singularity and φ3 field theory, Phys. Rev. Lett. 40 (1978) 1610.

[24] J.L. Cardy, Conformal invariance and the yang-lee edge singularity in two-dimensions, Phys.

Rev. Lett. 54 (1985) 1354.

[25] J.L. Cardy and G. Mussardo, S matrix of the Yang-Lee edge singularity in two-dimensions,

Phys. Lett. B 225 (1989) 275.

[26] I.Ya. Arefyeva and V.E. Korepin, Pis’ma Zh. Eksp. Teor. Fiz. 20 (1974) 680.

[27] S.N. Vergeles and V.M. Gryanik, Yyad. Fiz. 23 (1976) 1324.

[28] B. Schroer, T.T. Truong and P. Weisz, Towards an explicit construction of the sine-Gordon

field theory, Phys. Lett. B 63 (1976) 422.

[29] A. Fring, G. Mussardo and P. Simonetti, Form-factors for integrable lagrangian field theories,

the sinh-Gordon theory, Nucl. Phys. B 393 (1993) 413 [hep-th/9211053].

[30] A. Koubek and G. Mussardo, On the operator content of the sinh-Gordon model, Phys. Lett.

B 311 (1993) 193 [hep-th/9306044].

[31] G. Delfino, P. Simonetti and J.L. Cardy, Asymptotic factorisation of form factors in

two-dimensional quantum field theory, Phys. Lett. B 387 (1996) 327 [hep-th/9607046].

[32] S.L. Lukyanov, Form factors of exponential fields in the sine-Gordon model, Mod. Phys. Lett.

A 12 (1997) 2543 [hep-th/9703190].

[33] G. Mussardo and P. Simonetti, Stress-energy tensor and ultraviolet behavior in massive

integrable quantum field theories, Int. J. Mod. Phys. A 9 (1994) 3307 [hep-th/9308057].

[34] J.L. Cardy, Phys. Rev. Lett. a60 (1998) 2709.

[35] A.B. Zamolodchikov, Mass scale in the sine-Gordon model and its reductions, Int. J. Mod.

Phys. A 10 (1995) 1125.

[36] A. Koubek, Form-factor bootstrap and the operator content of perturbed minimal models,

Nucl. Phys. B 428 (1994) 655 [hep-th/9405014].

[37] A.B. Zamolodchikov, Two point correlation function in scaling Lee-Yang model, Nucl. Phys.

B 348 (1991) 619.

[38] V. Fateev, D. Fradkin, S.L. Lukyanov, A.B. Zamolodchikov and A.B. Zamolodchikov,

Expectation values of descendent fields in the sine-Gordon model, Nucl. Phys. B 540 (1999)

587 [hep-th/9807236].

[39] P. Baseilhac and M. Stanishkov, On the third level descendent fields in the bullough-dodd

model and its reductions, Phys. Lett. B 554 (2003) 217 [hep-th/0212342]; Expectation values

of descendent fields in the bullough- dodd model and related perturbed conformal field theories,

Nucl. Phys. B 612 (2001) 373 [hep-th/0104220].

[40] A.B. Zamolodchikov, From tricritical ising to critical Ising by thermodynamic Bethe ansatz,

Nucl. Phys. B 358 (1991) 524.

– 28 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB342%2C695
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB338%2C485
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C87%2C404
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C87%2C410
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C40%2C1610
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C54%2C1354
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C54%2C1354
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB225%2C275
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB63%2C422
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB393%2C413
http://xxx.lanl.gov/abs/hep-th/9211053
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB311%2C193
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB311%2C193
http://xxx.lanl.gov/abs/hep-th/9306044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB387%2C327
http://xxx.lanl.gov/abs/hep-th/9607046
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA12%2C2543
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA12%2C2543
http://xxx.lanl.gov/abs/hep-th/9703190
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA9%2C3307
http://xxx.lanl.gov/abs/hep-th/9308057
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2Ca60%2C2709
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA10%2C1125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA10%2C1125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB428%2C655
http://xxx.lanl.gov/abs/hep-th/9405014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB348%2C619
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB348%2C619
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB540%2C587
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB540%2C587
http://xxx.lanl.gov/abs/hep-th/9807236
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB554%2C217
http://xxx.lanl.gov/abs/hep-th/0212342
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB612%2C373
http://xxx.lanl.gov/abs/hep-th/0104220
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB358%2C524

